Veröffentlicht am
5. Dezember 2022
von
Shaun Turney.
Aktualisiert am
17. September 2024.
Die Nullhypothese und die Alternativhypothese sind zwei gegensätzliche Annahmen. Forschende versuchen, sich mithilfe statistischer Tests für eine der beiden Hypothesen zu entscheiden.
Nullhypothese (H0): Es gibt keinen Effekt in der Population.
Alternativhypothese (H1): Es gibt einen Effekt in der Population.
Veröffentlicht am
6. Juni 2022
von
Linda Hasselbusch.
Aktualisiert am
8. April 2024.
Die Stichprobe ist eine Teilmenge der Grundgesamtheit.
Der Unterschied zwischen Stichprobe und Grundgesamtheit besteht darin, dass die Grundgesamtheit alle Objekte umfasst, über die du Erkenntnisse gewinnen willst. Die Stichprobe ist hingegen der Teil der Grundgesamtheit, den du untersuchst, um Schlüsse zu ziehen.
Beispiel: Grundgesamtheit und StichprobeDu möchtest das durchschnittliche Alter bestimmen, in dem Studierende in Deutschland ihr Masterstudium beginnen.
Grundgesamtheit: Alle Studierenden, die ihren Master in Deutschland begonnen haben. Stichprobe: 500 Studierende, die du für deine Studie befragst.
Meist ist es aus Kosten- oder Zeitgründen nicht möglich, Daten der ganzen Grundgesamtheit zu erheben. Stattdessen wird repräsentativ für die Grundgesamtheit die Stichprobe untersucht.
Veröffentlicht am
15. Mai 2022
von
Linda Hasselbusch.
Aktualisiert am
15. Februar 2023.
Die Grundgesamtheit (auch Population) ist die gesamte Anzahl an Objekten, über die du Schlüsse ziehen möchtest.
In den Sozialwissenschaften werden meistens Personen untersucht. Die Grundgesamtheit gibt es aber auch in anderen Disziplinen und sie kann sich aus nichtmenschlichen Objekten zusammensetzen.
Eine Grundgesamtheit besteht beispielsweise aus:
Personen
Tieren
Pflanzen
Firmen
Ländern
Organisationen
Die einzelnen Objekte, die Teil der Grundgesamtheit sind, werden statistische Einheiten oder Merkmalsträger genannt.
Meist ist es nicht möglich, die vollständige Grundgesamtheit in die Datenerhebung einzubeziehen. Deshalb wird repräsentativ eine Stichprobe aus der Grundgesamtheit untersucht.
Beispiel GrundgesamtheitDu möchtest das durchschnittliche Alter bestimmen, in dem Studierende in Deutschland ihr Masterstudium beginnen.
Grundgesamtheit: Alle Studierenden, die ihren Master in Deutschland begonnen haben. Stichprobe: 500 Studierende, die du in deiner Studie befragst.
Veröffentlicht am
10. April 2022
von
Linda Hasselbusch.
Aktualisiert am
24. April 2023.
Ein Hypothesentest wird dazu benötigt, Vermutungen über Zusammenhänge in der Welt zu überprüfen. Auf Grundlage dieser Vermutungen werden Hypothesen aufgestellt.
Anhand eines statistischen Tests findest du heraus, wie wahrscheinlich die aufgestellte Hypothese ist. Demnach wird die Hypothese beibehalten oder verworfen.
Eine 100%ige Sicherheit, dass die Hypothese tatsächlich stimmt, kannst du jedoch nie erlangen. Es besteht immer eine kleine Möglichkeit, dass Ergebnisse nur durch Zufall entstanden sind.
Da es nicht möglich ist, die gesamte Population zu testen, wird stattdessen eine repräsentative Stichprobe verwendet. Auf Grundlage dieser Stichprobe werden Daten erhoben und später analysiert. Anhand der Resultate wird geschlussfolgert, wie die Ergebnisse auf die gesamte Population bezogen aussehen würden.
Veröffentlicht am
3. März 2022
von
Rebecca Bevans.
Aktualisiert am
15. Februar 2023.
Der p-Wert gibt an, mit welcher Wahrscheinlichkeit das gemessene Ergebnis der Stichprobe zustande gekommen sein könnte, falls die Nullhypothese stimmt.
Somit können Schlüsse darüber gezogen werden, ob gefundene Unterschiede oder Zusammenhänge zwischen Variablen durch Zufall entstanden sind oder nicht.
Veröffentlicht am
25. November 2021
von
Hannah Sill.
Aktualisiert am
19. Juni 2024.
Das Signifikanzniveau α beschreibt die maximale Wahrscheinlichkeit, dass eine Nullhypothese fälschlicherweise abgelehnt wird.
Du wählst das Signifikanzniveau selbst, bevor du einen statistischen Test durchführst. Meistens wird α = 0.05 oder α = 0.01 gewählt. Bei Hypothesentests wird der p-Wert mit dem Signifikanzniveau verglichen, um zu bestimmen, ob ein Zusammenhang, Effekt oder Unterschied statistisch signifikant ist.
Wenn der p-Wert kleiner ist als das gewählte Signifikanzniveau, ist das Ergebnis statistisch signifikant und die Nullhypothese kann abgelehnt werden.
Veröffentlicht am
20. August 2020
von
Valerie Benning.
Aktualisiert am
9. Januar 2023.
Ziel der deskriptiven Statistik ist es, einen Überblick über die vorliegenden Daten zu erhalten, diese zu ordnen und zusammenzufassen.
Es geht in der deskriptiven Statistik also um das Beschreiben von Daten und die Ergebnisse beziehen sich dabei immer direkt auf den vorliegenden Datensatz.
MerkeNeben der deskriptiven Statistik gibt es noch die induktive Statistik (auch Inferenzstatistik genannt). Hierbei werden Aussagen über einen Datensatz hinaus getroffen, indem von einer Stichprobe auf eine Grundgesamtheit geschlossen wird.
Veröffentlicht am
13. August 2020
von
Valerie Benning.
Aktualisiert am
2. Dezember 2022.
Zusammenhangsmaße werden verwendet, um die Stärke eines statistischen Zusammenhangs zwischen zwei Variablen anzugeben.
Einige Zusammenhangsmaße geben darüber hinaus auch Auskunft über die Richtung des Zusammenhangs.
Welches Zusammenhangsmaß du verwenden kannst, hängt vom Skalenniveau deiner Daten ab.
BeispielWir wollen den Zusammenhang zwischen der Entfernung zwischen Wohn- und Arbeitsort und der Dauer des Arbeitsweges bestimmen. Wir haben also metrische Daten vorliegen und bestimmen daher als Zusammenhangsmaß den Korrelationskoeffizienten nach Pearson.
Veröffentlicht am
16. Juli 2020
von
Valerie Benning.
Aktualisiert am
21. November 2022.
Cramers V gibt Auskunft über den statistischen Zusammenhang zwischen zwei oder mehreren nominalskalierten Variablen.
Der Wert 0 bedeutet, dass es keinen statistischen Zusammenhang gibt.
Der Wert 1 bedeutet, dass es einen perfekten statistischen Zusammenhang gibt.
In der Praxis liegt Cramers V normalerweise zwischen 0 und 1.
Bei der Bestimmung von Cramers V wird der Chi-Quadrat-Wert (X2) standardisiert. Dadurch kannst du Zusammenhänge zwischen Variablen anhand von Cramers V vergleichen.
Veröffentlicht am
7. Juli 2020
von
Valerie Benning.
Aktualisiert am
9. August 2022.
Den Rangkorrelationskoeffizient nach Spearman wird verwendet, um den Zusammenhang zwischen zwei mindestens ordinalskalierten Variablen zu bestimmen.
Anhand des Rangkorrelationskoeffizienten können wir Aussagen darüber treffen, ob zwei Variablen zusammenhängen, und wenn ja, wie stark der Zusammenhang ist und in welche Richtung er besteht.
Der Rangkorrelationskoeffizient nach Spearman wird auch als Spearman‘s Rho () bezeichnet.